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A b s t r a c t  

It is shown that the magnetic pole of lowest strength and the pseudoparticle solution of 
the Yang-Mills equations correspond to natural connections defined on the principal 
bundles U(2)/U(1) = S 3 -~ $2 and Sp(2)/Sp(1) = $7 -~ $4, respectively. This observation 
leads to a general method of constructing new, topologically nontrivial solutions of the 
Maxwell and Yang-Mills equations. Among them is an "electromagnetic instanton" 
defined over the two-dimensional complex projective space endowed with the Fubini- 
Study metric. 

Recent theoretical work on the properties of  magnetic poles (Nambu, 
1974; Parker, 1975; Goldhaber, 1976; Wu and Yang, 1976; many references 
are given by Goldhaber and Smith, 1975) and on the Yang-Mills instanton 
(Belavin et al., 1975; Hooft, 1976a, b; Jackiw and Rebbi, 1976a; Callan et 
al., t976) encouraged me to consider the geometrical models that can be 
associated with the corresponding classical gauge fields. It is known that 
electromagnetism and the Yang-Mills theory admit an interpretation in 
terms of  connections and curvatures on principal bundles with the structure 
groups U(1) and SU(2), respectively (Yang and Mills, 1954; Lubkin, 1963; 
Trautman, 1970). Clearly, the U(1)bundle carrying a connection correspond- 
ing to a magnetic pole is nontrivial (Wu and Yang, 1975; Ezawa and Tze, 
1976). Consider a magnetic pole at rest relative to an inertial frame in 
Minkowski space-time N4; the manifold R 4 with the worldline of  the pole 
removed is diffeomorphic to R 2 x $2. One is thus led to consider circle 
bundles over $2 ; they are all known. The "simplest," nontrivial among them 
was described by Hopf (1931) in the same year Dirac (1931) published his 
paper on magnetic poles. 

i On leave from the Institute of Theoretical Physics, Warsaw University, Hoka 69, 
Warsaw, Poland. 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 

561 



562 TRAUTMAN 

Let Zo, z l  be two complex numbers, then goZo + ~1zl = 1 defines a three- 
dimensional sphere S 3 . The group U(1) acts on S 3 by (z o, z l )u  = (ZoU, z lu), 
where u ~ U(1), i.e., ~,u = 1. The orbits (fibers) of  U(1) in $3 are circles and 
the quotient o f S  3 by this action is S 2. The projection S 3 ~ $2 is given by a 
composition of  (z o , z 1) I-+ z t/Zo with the stere ographic map C-+ $2. This 
Hopf  fiber bundle admits a natural connection, which may be conveniently 
expressed in terms of  the Euler angles: Set 

z o = [exp ½i (X +qS)] cos30,  zl  = [exp3i  (X-~b)] sin30 

and compute the Riemannian line element of  S 3, 

4(d~odz 0 + d ~ l d 2 1 )  = dO 2 + sin 2 0 dO 2 + (dx  + cos 0 d~) 2 

The form c~ = ½(dx + cos 0 d~) defines a connection on $3 considered as a 
circle bundle over S 2. Its curvature F = 3 sin 0 ddp AdO,  extended to 
Minkowski space-time is the electromagnetic field of  a magnetic pole of  
strength g = ½. (The units are such that the charge o f  the electron is equal 
to the fine-structure constant). The form o~ is smooth and invariant under the 
transitive action of  U(2) on $3. The singularities of  the potentials o f  the 
magnetic pole are due to the nontrivial character of  the bundle S 3 ~ S 2. 
The map s, sending S 2, with the north pole (0 = 0) removed, into S 3, and 
defined by s(O, d~) = (z o = ei4 ) cos 30, Zl = sin ½0) is smooth, but it cannot be 
extended throughout $2. Therefore, s is only a local section and the potential 
A in the gauge s, A = s* (o~) = 3(1 + cos O)d~, is singular at 0 = 0 because its 
essential component with respect to an orthonormal frame is A4~ = (1 + cos 0)/ 
2r sin 0. 

The above construction may be generalized by considering multidimensional 
spaces and allowing the coordinates z~ c K to be either complex (K = C) or 
quatemionic (Finkelstein et al., 1973) (K = H). The equation 

~oZo + Z t z l  +" " • +ZnZ,  = 1 ( t )  

defines an $2n+1 or an S4n+ 3, depending on whether K = C or/-/. The group 
G(n + 1) of  linear, K-valued transformations acting on the z's on the left and 
preserving the quadratic form (1) is U(n + 1) in the first, and Sp(n + 1) in 
the second case (Steenrod, 1951; Husemoller, 1966). The group Sp(1) of  
unit quaternions is isomorphic to SU(2). In either case, the group G(1) acts 
freely on the sphere (1) by (z o . . . . .  zn)u  = (ZoU . . . . .  ZnU), U E G(1). The 
quotient o f ( l )  by this action is the projective space in n dimensions over K. 
There are thus two sequences of  Hopf principal fiber bundles: 

$2n+1 -+ CPn with group U(1) 

$4n+3 --~ HPn with group Sp(1) = SU(2) 

Assuming z o ~ 0 one can introduce a local trivialization of  the sphere (1) 
by writing z 0 = pu and z a = faZo, where p = Iz01 > 0  anda  = I, • • •, n. 
It follows from these definitions that u E G(1) and p-2 = 1 + ~ -(a~a" The 
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~"s constitute a local coordinate system on the projective space. The 
Riemannian line element on the sphere is 

n 

dl 2=  ~ dGdz~  
~ = 0  

and may be computed in tenns o f u  and ~'a: 

d l  2 = d s  2 _ 032 

where 

03 = u - l  du + ~P 2 u - '  ~ ( (adL - (~a)~a]U 

and ds 2 is the symmetric part of  the positive definite Hermitean form 

~. d~ahabd~b 
a,b  

with -hab = hba given by 

~2 = d03 + 03 A w = u - '  ~ (d~ a Ahabd~b)U (2) 
a , b  

The forms u - t d u ,  03 and ~2 have values in the Lie algebra of  G(1), i.e., in 
the pure imaginary subspace of  K. Therefore, the quadratic form _032 is 
positive definite. Since both the latter form and dP are invariant under the action 
of  G(I),  so is ds 2 and it defines a Pdemannian metric on the projective space~ 
In the complex case, 03 A 03 = 0, and, if one writes w = ic~, ~ = iF, then both 
c~ and F are real, and F is the Hodge form (Weil, 1958; Chem, 1967; Morrow 
and Kodaira, 1971) of  CPn. 

The fundamental result of  this paper is that, for any n, g2 given by (2) is a 
solution of  the source-free Maxwell (K = C) or Yang-Mitls (K = H)  equations, 
invariant under SU(n + 1) or Sp(n + 1), respectively. To prove this, we note 
that g2 satisfies the Bianchi identity, 

D~2=d~2 + c o A ~ 2 -  ~ A w  = 0 

and is invariant under G(n + 1) by construction. The 2n form F A  • . • A F  
(n factors) is a volume element on CPn, whereas the 4n form ~2 A.  • • A ~2 
(2n factors) plays a similar role on HP n. These volume elements define 
orientations which, together with ds 2, determine the duals of  differential 
forms. The dual *~  of  ~2 is proportional to ~2 A -. • A g2, where the exterior 
product ~ontains n - 1 factors for CP n and 2n - 1 factors for HP n. There- 
fore, the Bianchi identity implies that the gauge field ~ is source-free: 

D ' f 2  = 0 

For example, the Belavin-Polyakov-Schwartz-Tyupkin solution corres- 
ponds to K = H and n = 1 : There is then one quaternion coordinate 
~-, p-2 = 1 + ~-~', and 

d s  2 = 04d~d~ 
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is the line-element o f  a four-dimensional s_phere of  radius ½. The local section 
u = t leads to the potential  ½p2 ~d~" - (d~'){'] and the field p4 d~ Ad~.  The action 
of  Sp(2)  on S 7 projects to an action o f  SO(5) on HP 1 = S 4 and the solution is 
invafiant under the latter group (Jackiw and Rebbi, 1976b, Yang, 1977). 

A new solution of  Maxwell 's equations is obtained for K = C and n = 2. In 
local coordinates on CP 2 given by ~1 = ei~ tan 0 cos qS, ~'2 = eiV tan 0 sin 4~, 
the electromagnetic field is 

F = sin 20 dO A (cos 2 0 d/~ + sin 2 0 dp) - sin 2 0 sin 2 ~ dO A (dlJ - dp) (3) 

whereas the Fubini-Study metric assumes the form 

ds 2 = dO 2 + sin 2 0 [dO 2 + cos 2 0 (cos 2 q~ d#  + sin 2 ~b du) 2 

+ sin 2 ¢ cos 2 ¢ (d/l - d r )  2 ] (4) 

The field (3) is self-dual, *F  = F ,  and its energy-momentum tensor vanishes. 
Therefore, equations (3) and (4) define a solution of  Einstein's equations with 
a cosmological term. Following a suggestion by Eguchi and Freund (1976), 
this solution, which is invariant under SU(3), could be called the gravitational 
and electromagnetic instanton. The integral f F A  F associated with the second 
Chern class is equal to 4rr 2. 

I f X  is an analytic submanifold of  CPn, then the embedding k : X-+ CPn 
may be used to pull the Hodge form F from CPn back to X and to define 
thus a new solution of  Maxwell 's equations on X. For  example,  for any 
positive integer n there is an embedding kn : $2 = CPa -~ CPn given in terms 
of the homogeneous coordinates (za) by 

k n ( z o , z l  ) = (Zo n, [n.~l/2zn-1Z . [ n l l / 2 . n - - m . m  z n kl] 0 1, • .~k m] ~'0 ~"1 , . . . ,  1 ) 

An electromagnetic field pulled by k n from CP n to S 2 corresponds to a 
magnetic pole of  s t rengthg  = n/2. Moreover, k n induces over S 2 a circle 
bundle isomorphic to the lens space L(n,  1) (Greenberg, 1967). 

An interesting possibility, now under investigation, is to generalize the 
method described in this paper to spaces with an indefinite metric, by 
replacing the groups U(n) and Sp(n) by U(p, q) and Sp(p, q), respectively. 
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